
Decimated Input Ensembles for Improved Generalization

Kagan Tumer, NASA Ames Research Center, Caelum Research, Mo�ett Field, CA

Nikunj C. Oza, University of California, Berkeley, CA

To appear in the Proceedings of the International Joint Conference on Neural Networks, pp xxx-xxx,
Washington DC, 1999.

Abstract| Using an ensemble of classi�ers instead of

a single classi�er has been demonstrated to improve gen-

eralization performance in many di�cult problems. How-

ever, for this improvement to take place it is necessary to

make the classi�ers in an ensemble more complementary.

In this paper, we highlight the need to reduce the correlation

among the component classi�ers and investigate one method

for correlation reduction: input decimation. We elaborate

on input decimation, a method that uses the discriminating

features of the inputs to decouple classi�ers. By presenting

di�erent parts of the feature set to each individual classi�er,

input decimation generates a diverse pool of classi�ers. Ex-

perimental results con�rm that input decimation combining

improves generalization performance.

I. Introduction

A classi�cation learning task involves constructing
a mapping from input instances (normally described
by several features) to the (most likely) class to which
the instances belong. Supervised learning consists of
setting free parameters in the system (e.g., weights in
a feed-forward neural network) according to a set of
training examples{instances with known class member-
ships. The generalization performance of such a classi-
�er (performance on patterns that have not previously
been presented to the classi�er) provides an indication
of how well the classi�er has learned the particular map-
ping [2]. However, in general, there are many reason-
able generalizations given a �nite training set. For ex-
ample, when training a neural network classi�er, dif-
ferent initial weights, learning rates, momentum terms,
and architectures (e.g., number of hidden layers and
hidden units, connections, single vs. distributed out-
put encoding, etc.) a�ect how the classi�er performs
on novel examples [19]. For this reason, choosing a
single classi�er is not optimal. Even choosing the sin-
gle best classi�er among several classi�ers trained using
the same training examples is suboptimal because po-
tentially valuable information may be wasted. These
observations lead to the idea of generating classi�er en-
sembles | also known as combiners or turnkey methods
| to get better performance [12], [31], [32].

Recently, many researchers have demonstrated that
using classi�er ensembles (e.g., averaging the outputs of
multiple classi�ers before reaching a classi�cation de-
cision) leads to improved performance for many di�-
cult generalization problems [4], [28], [32]. However, in
many domains there are serious impediments to such
\turnkey" classi�cation accuracy improvements. Most
notable among these is the deleterious e�ect of highly
correlated classi�ers on ensemble performance. One
particular solution to this problem is training each clas-
si�er in the ensemble using a "new" training set gen-
erated by sampling from the original one. However,
with �nite number of patterns, this causes a reduc-
tion in the training patterns each classi�er sees, often
resulting in considerably worsened generalization per-
formance for each individual classi�er (particularly for
high-dimensional data domains). Generally, this drop
in the accuracy of the individual classi�er performance
more than o�sets any potential gains due to combining,
unless diversity among classi�ers is actively promoted.
Therefore, in constructing the individual classi�ers

to be combined, it is important to have classi�ers that
have complementary information, i.e., have the lowest
possible correlation [1], [14], [20], [30]. There are many
methods for actively promoting diversity among the
classi�ers to be pooled, including bagging [5], [6], boost-
ing [10], [11], cross-validation partitioning [18], [30], and
error-correcting output codes [9].
In this work, we present input decimation, a method

that:

� reduces the dimensionality of the data, thus less-
ening the impact of the \curse of dimensionality";

� reduces the correlation among the classi�ers by
training them on di�erent features; and thereby,

� improves the classi�cation performance of the en-
semble.

In conventional dimensionality reduction methods
such as Principal Component Analysis (PCA), the
focus is on extracting the axes on which the data
shows the highest variability. Although this approach
\spreads" out the data in the new basis, and therefore is



of great help in regression problems, there are no guar-
antees that the new axes are consistent with the dis-
criminatory features in a classi�cation problem. There
are many variations on PCA that use local and/or use
non-linear processing to improve dimensionality reduc-
tion [8], [17], [22], [23], [15], [16], [27], though they gen-
erally are based solely on the inputs. Input decima-
tion, on the other hand, explicitly seeks out discrimi-
nating features, and eliminates input features that are
least correlated with the outputs. The strength of the
method is that only those features that have the most
\explanatory" information pertinent to the discrimina-
tion task at hand are retained. As a result, this method
is ideally suited for high dimensional data sets where
the presence of redundant information is more likely.
Input decimation resulted in dimensionality reduc-

tion by a factor of four to six on the data sets we used
in these experiments. Furthermore, this dimensionality
reduction was accompanied by a drop on the error rate
of input decimated combiners by 23-50% over combin-
ers using the full feature set.
In the next section, we �rst brie
y review a combin-

ing framework for classi�cation problems that quanti-
�es the need to reduce the correlation among individ-
ual classi�ers (for more details, see [30]), and summa-
rize the various correlation reduction methods. In Sec-
tion III., we discuss the particular type of input deci-
mation we implemented, i.e., how we chose the number
of classi�ers and the subsets of inputs for each clas-
si�er. In Section IV. we discuss experimental results
on three data sets from the PROBEN1 benchmark [24]
and the UCI Machine Learning Repository [3]. We con-
clude with an analysis of our results, and a discussion
of the bene�ts of input decimation compared to other
methods of constructing ensemble classi�ers.

II. Background

It is well known that classi�ers that have a dis-
tributed encoding for the output and that are trained to
minimize a cross-entropy or mean square error (MSE)
function over that output approximate the posterior
probability densities of the corresponding classes [25],
[26]. That is, the ith output of the classi�er approxi-
mates the posterior probability density of the ith class.
Therefore, we can model the ith output of such a clas-
si�er as follows(details of this derivation are in [29]):

fi(x) = P (Cijx) + �i(x);

where P (Cijx) is the posterior probability distribu-
tion of the ith class given instance x, and �i(x) is the
error associated with the ith output. Given an input

x, if we only had this one classi�er, we would classify x

as being in the class i whose value fi(x) is largest.
Instead, if we use a combiner that calculates the

arithmetic average over the outputs of N classi�ers
fmi (x) (m 2 f1; : : : ; Ng), then we get an approxima-
tion to P (Cijx) as follows:

favei (x) =
1

N

NX
m=1

fmi (x) = P (Cijx) + ��i(x); (1)

where:

��i(x) =
1

N

NX
m=1

�mi (x)

and �mi (x) is the error associated with the ith output
of the mth classi�er. The variance of ��i(x) is given
by [30]:

�2��i =
1

N2

NX
l=1

NX
m=1

cov(�li(x); �
m
i (x))

=
1

N2

NX
m=1

�2�m
i
(x) +

1

N2

NX
m=1

X
l6=m

cov(�li(x); �
m
i (x)):

If we express the covariances in terms of the corre-
lations (cov(x; y) = corr(x; y)�x�y), assume the same
variance �2�i across classi�ers, and use the average cor-
relation factor among classi�ers, �i, given by

�i =
1

N(N � 1)

NX
m=1

X
l6=m

corr(�mi (x); �li(x)); (2)

then the variance becomes:

�2��i =
1

N
�2�i(x) +

N � 1

N
�i�

2
�i(x)

: (3)

De�ne bave to be the di�erence between the decision
boundary of the average combiner and the true decision
boundary between classes i and j. It can be shown [31]
that the variance of this boundary o�set is

�2bave =
�2��i + �2��j

s2

where s is the di�erence between the derivatives of
the posteriors of classes i and j. Using equation (3)
and some simpli�cation, we get:



�2bave =
�2��i + �2��j

Ns2
+

N � 1

Ns2

�
�i�

2
�2
i
(x) + �j�

2
�2
j
(x)

�
:

Using the fact that the errors across classes are in-
dependent and identically distributed (i.e., ��i(x) =
��j (x)) leads to:

�2bave =
�2b
N

�
1 + (N � 1)

�i + �j

2

�
: (4)

where �2b is the variance of the boundary o�set for a
single component of the average combiner. The corre-
lation term above applies only to classes i and j. To
extend this expression to include all the classes, we use
the following:

� =

LX
i=1

Pi�i (5)

where Pi is the prior probability of class i. We can
now write the average combiner's added error beyond
the Bayes error rate as:

Eave
add =

s

2
�2bave =

s

2
�2b

�
1 + �(N � 1)

N

�

= Eadd

�
1 + �(N � 1)

N

�
: (6)

From this, we can immediately see that as the cor-
relations among classi�ers decrease, the added error
introduced by the average combiner decreases, which
leads to improved combiner performance.

III. Input Decimated Features

Many combining methods incorporate (explicitly or
implicitly) a correlation reduction method to improve
generalization. Some partition the training set much
like one does when using cross-validation and train one
classi�er on each partition [18], [30]. A better known
method, bagging [5], [6], constructs several sets of m
training examples drawn randomly with replacement
out of the original set of m training examples and
trains one classi�er using each of these resampled train-
ing sets. Boosting [10], [11] also subsamples the input
space, but the training samples are selected based on
their \di�culty" to be learned and the training sets are
constructed iteratively.
Unlike the methods mentioned above, the approach

we adopt here is based on using di�erent subsets of
input features, rather than a di�erent subset of input

patterns. Intuitively, input decimation decouples the
classi�ers by exposing them to di�erent aspects of the
same data. In this method one trains L classi�ers, one
corresponding to each class in an L-class problem. For
each classi�er, one selects a subset of the input fea-
tures according to their correlation to the correspond-
ing class. The objective is to \weed" out all input
features that do not carry discriminating information
relevant to the particular class. Cherkauer reports im-
proved generalization using a similar method in which
hand-tuned feature sets are used to train classi�ers in a
combiner [7]. The main advantage of input decimation
over standard dimensionality reduction methods such
as Principal Component Analysis (PCA) is that input
decimation selects features based on their correlation
with the outputs.
In this paper, we report the results of experiments

in which each decimated feature set had the same di-
mensionality (e.g., we chose a �xed number of highest-
correlation inputs for each classi�er).1 The base classi-
�ers we selected for this study are Multi-Layered Per-
ceptrons (MLPs) trained with the backpropagation al-
gorithm [13]. For comparison purposes, we also re-
port the results of using a �xed number of highest-
correlation principal components for each classi�er. We
also report results of base classi�ers trained on the full
feature set, along with results from combiners that pool
L base classi�ers.2 We have selected the \averaging"
combiner, as it is computationally cheap and provides
results quantitatively similar to combiners discussed
above (e.g., bagging, boosting etc.) [29].

IV. Experimental Results

A. Data Sets and Classi�ers

The Gene data has 120 input features and three class
variables [21], [24]. Through experimentation,3, we se-
lected an MLP with a single hidden layer of 20 units, a
learning rate of 0.5 and a momentum term of 0.8.4

The Splice data consists of 60 input features and
three classes [3]. Here we selected an MLP with a sin-
gle hidden layer composed of 120 units, a learning rate
of 0.05, and a momentum term of 0.1. The Satellite

1We are currently exploring cases where each classi�er has
(potentially) access to a di�erent number of inputs.

2These combiners will be referred to as \original combiners"
in the remainder of this paper to distinguish them from the dec-
imated combiners.

3The learning momentum rates were selected experimentally,
whereas the number of hidden units was selected through cross-
validation.

4For each data set, we chose the same number of hidden
units, learning rate, and momentum term to use in training both
the isolated neural networks and the networks that were part of
combiners.



Image data has 36 input features and 6 classes [3]. We
chose an MLP with a single hidden layer of 50 units,
and a learning rate and momentum term of 0.5. In all
three data sets, we performed 20 independent training
runs of 100 epochs each for both the single networks
and the combiners.
The average classi�cation accuracies (percentage cor-

rect) with standard deviations over 20 runs of the orig-
inal MLP ("Single") and the original combiner ("Aver-
age") and the average correlations among the compo-
nents in the combiners are given in Table I. For each
problem there as many classi�ers in the combiners as
there are classes in the data (e.g., we combined 3 classi-
�ers for Gene and Splice and 6 for Satellite). Note that
even though the networks in the combiner are struc-
turally the same and are trained on precisely the same
data, they are not perfectly correlated due to the ran-
dom initial assignment of weights to these networks.
This is the main reason why we get some improvement
in the classi�cation accuracy through ensembles. For
the Gene data, the average combiner was signi�cantly
more accurate than the single MLP, while for the Satel-
lite Image and Splice data sets, the combiner was only
marginally more accurate.

TABLE I
Average Accuracy of Original Network and Combiners

Single Average Corr.

Gene 83.417 � .796 86.418 � .342 .7910
Splice 84.722 � .534 85.372 � .631 .7263
Satellite 87.785 � .685 89.010 � .273 .9523

B. Input Decimation Combining

This section describes experiments in which we chose
a �xed number of inputs or principal components for
each of the classi�ers in our ensemble. For the Gene
data we chose a range from 20 inputs to 110 inputs
(in increments of 10) out of the original 120. For the
Splice data, we chose a range from 10 inputs up to 50
inputs (in increments of 10) out of the original 60. For
the Satellite Image data, we chose a range from 9 to 27
inputs (in increments of 9) out of the 36 total inputs.
For input decimation, for each classi�er, we chose the
features having the highest correlations with the corre-
sponding class output. The accuracies of the resulting
classi�ers with standard deviations over 20 independent
runs are given in Tables II-IV below, for the input Dec-
imated Features (DF) and PCA. The column "Single"
is the average classi�cation accuracy of the individual
components in the decimated combiners.
In case of the Gene data, the average combiners with

20, 30, and 40 inputs are signi�cantly more accurate
than both the original network combiners described in

TABLE II
Gene Data: In
uence of Dimensionality on Combiner

Performances
Dim. Single Average Corr.

110 DF 83.636 � 0.930 86.482 � 0.851 0.800
PCA 76.595 � 1.086 85.876 � 0.529 0.394

100 DF 83.623 � 1.165 86.419 � 0.731 0.791
PCA 76.166 � 0.561 85.574 � 0.837 0.457

90 DF 82.947 � 1.041 86.091 � 0.584 0.788
PCA 81.761 � 1.222 85.839 � 0.885 0.729

80 DF 83.632 � 1.216 86.457 � 1.015 0.794
PCA 83.316 � 0.894 86.368 � 0.530 0.781

40 DF 84.237 � 0.897 87.276 � 0.671 0.805
PCA 65.737 � 2.141 80.958 � 0.806 0.240

30 DF 83.422 � 0.836 88.045 � 0.617 0.762
PCA 76.784 � 1.645 84.767 � 0.919 0.523

20 DF 85.754 � 0.955 89.546 � 0.548 0.734
PCA 67.192 � 0.905 83.001 � 0.697 0.665

TABLE III
Satellite Image Data: In
uence of Dimensionality on

Combiner Performances
Dim. Single Average Corr.

27 DF 86.512 � 0.764 86.482 � 0.851 0.923
PCA 87.863 � 0.572 88.820 � 0.154 0.897

18 DF 82.645 � 1.164 86.419 � 0.731 0.856
PCA 84.877 � 1.031 89.510 � 0.242 0.910

9 DF 70.679 � 0.838 86.091 � 0.584 0.395
PCA 83.574 � 0.756 89.035 � 0.252 0.948

the previous section and their PCA counterparts. Note
also that the performances of the PCA-based combin-
ers vary arbitrarily as the number of principal compo-
nents changes, while the performances of the feature-
based combiners are more stable. This is consistent
with the fact that principal components are not nec-
essarily good discriminative features, and eliminating
particular principal components have unpredictable ef-
fects on the classi�cation performance.

In the Splice data experiments, all the deci-
mated feature-based combiners signi�cantly outper-
formed both the original combiner and the PCA-based
combiners. What is particularly notable in this case is
that a reduction of dimensionality based on PCA has
a strong negative impact on the classi�cation perfor-
mance. With 20 principle components for example, the

TABLE IV
Splice Data: In
uence of Dimensionality on Combiner

Performances
Dim. Single Average Corr.

50 DF 85.152 � 0.619 86.896 � 0.312 0.857
PCA 83.230 � 0.868 85.014 � 0.767 0.861

40 DF 86.460 � 0.607 88.532 � 0.523 0.855
PCA 82.286 � 0.824 84.939 � 0.556 0.838

30 DF 87.880 � 0.928 90.329 � 0.833 0.859
PCA 81.276 � 0.726 84.073 � 0.355 0.805

20 DF 88.310 � 0.666 92.380 � 0.714 0.792
PCA 79.263 � 0.548 82.493 � 0.495 0.785

10 DF 84.669 � 0.561 92.342 � 0.737 0.719
PCA 78.109 � 0.542 80.066 � 0.400 0.816



performance of the individual classi�ers drops by 7 %,
whereas the performance of the DF individual classi�er
increases by 3 %. The improvement of the performance
due to decimation is an initially surprising aspect of
these experiments. However, an analysis shows that
the inputs that were decimated were in fact providing
\noise" to the classi�er. Therefore, although it is theo-
retically possible for the classi�er with all the features
to do well, it is in practice very di�cult to train.
In the Satellite Image data however, the input dec-

imated combiner with 27 features was the only one
that did not perform signi�cantly worse than the single
neural network and the original combiner. This is the
data set with the lowest dimensionality, and shows two
things: (i) in order to take advantage of input decima-
tion, the initial dimensionality has to be very high; and
(ii) If there are features that have signi�cant meaning,
they need to be included in the feature set regardless of
their correlation to the particular output. We observed
that consecutive groups of four features in the satellite
image data set correspond to spectral values for a given
pixel. In examining the eigenvalues and eigenvectors,
we found that the highest eigenvalue was 91.6% of the
sum of the eigenvalues, and the corresponding eigenvec-
tor was a simple linear combination of the four spectral
values across all the pixels. In this case, the higher
principal components are good discriminative features.
Because all the features have the same range, direc-
tions of higher variability are more likely to correspond
to good discriminative features.

V. Analysis

We can analyze the performance of the decimated
feature combiners in more detail by examining the av-
erage performances of the individual components in the
combiners (column "Single") and the average correla-
tions among the components in Tables II-IV. The cor-
relation among the individual classi�ers was reduced in
all cases but the Splice data. Furthermore, only for the
Gene data did this drop come without a substantial per-
formance penalty. For the Gene data, as more features
were removed, the accuracy of the individual classi�ers
decreased, but the correlation among the classi�ers also
decreased. This trade-o� needs to be balanced in or-
der to �nd the best combiner. In case of the Satellite
Image data, as the number of inputs decreased, even
though the correlations among the classi�ers decreased,
the performance of the individual classi�ers dropped
su�ciently to eliminate any potential bene�ts. For the
Splice data, as the number of inputs decreased, the
correlation decreased noticeably, while the individual
classi�cation rate improved, thereby yielding superior
combiners.

As discussed above, there is some variation in how
well input decimation works. In cases where the cor-
relation drop is not accompanied by a correspond-
ingly large drop in individual performance, gains can
be achieved through combiners. In some cases how-
ever, instead of a drop, a reduction in correlation is
coupled with improved individual classi�cation perfor-
mance. We attribute this phenomenon to the reduction
in the complexity of the model required. Therefore, re-
duction of over�tting can be a side bene�t of input
decimation in many cases. (This is akin to a signal-to-
noise issue. Removing features with low correlation to
the outputs is removing noise from the classi�er.)

As the experiments show, input decimation per-
formed substantially better than the conventional com-
biners on two of the data sets. In the Satellite Im-
age data, on the other hand, input decimation failed to
yield improvements over conventional algorithms (in-
deed failed to reach their level in many cases). Accord-
ing to the documentation for this data [3], the features
(17-21) corresponding to the central pixel (the center
of the image) are more useful than the others; however,
many of the other inputs have higher correlations with
the di�erent classes. Because of this, many of the clas-
si�ers had to have a large number of features, before
features 17-21 were included. In this case, due to a
particular coding of the features, certain features had
to be included in all cases.

VI. Conclusion

This paper discussed the importance of reducing the
correlation among classi�ers in an ensemble and ex-
plored input decimation as a technique for correlation
reduction. Experimental results on three data sets re-
vealed several bene�ts of input decimation over using
combiners based on dimensionality reductions relying
on PCAs.

Furthermore, training individual classi�ers with re-
duced input sets gives our method several advantages
over other methods of introducing diversity in a pool.
In particular, input decimation and subsequent training
of classi�ers on smaller features sets:

� reduces over�tting in each classi�er;

� reduces training times for the individual classi�ers;

� reduces the correlations among the classi�ers; and

� provides more insight into how each classi�er and
associated combiner makes its decisions (i.e., which
features carry the most discriminating features for
each task.)



The experiments reported in this article were based
on all classi�ers being trained on the same number of
features. We are currently investigating allowing a vari-
able number of inputs for each classi�er. We are also
investigating various measures that reveal the best set
of variables to include in each classi�er. Such measures
need to account for the correlations (or other measure of
similarity) of the inputs with each class output, the cor-
relations among the inputs themselves, and the number
of inputs common to the classi�ers. We are also ex-
ploring \prelearning" (i.e., preparing the components
before learning by training them only to minimize their
correlations with each other). This approach shifts the
component classi�ers to di�erent parts of the parame-
ter space so that they are less likely to �nd the same
locally-optimal solution during training.
Acknowledgments. Part of this work was done

while Nikunj Oza was visiting NASA Ames Research
Center. He was also supported by a Schlumberger
Foundation Fellowship.

References

[1] K. M. Ali and M. J. Pazzani. On the link between error
correlation and error reduction in decision tree ensembles.
Technical Report 95-38, Department of Information and
Computer Science, University of California, Irvine, 1995.

[2] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, New York, 1995.

[3] C. Blake, E. Keogh, and C.J. Merz. UCI repos-
itory of machine learning databases, 1998. (URL:
http://www.ics.uci.edu/�mlearn/MLRepository.html).

[4] L. Breiman. Stacked regression. Technical Report 367, De-
partment of Statistics, University of California, Berkeley,
1993.

[5] L. Breiman. Bagging predictors. Technical Report 421,
Department of Statistics, University of California, Berkeley,
1994.

[6] L. Breiman. Bias, variance and arcing classi�ers. Tech-
nical Report 460, Department of Statistics, University of
California, Berkeley, 1996.

[7] K. J. Cherkauer. Human expert-level performance on a
scienti�c image analysis task by a system using combined
arti�cial neural networks. In Working Notes of the AAAI

Workshop on Integrating Multiple Learned Models, pages
15{21, 1996.

[8] D. de Ridder and R. P. W. Duin. Sammon's mapping us-
ing neural networks: A comparison. Pattern Recognition

Letters, 18:1307{1316, 1997.
[9] T.G. Dietterich and G. Bakiri. Solving multiclass learn-

ing problems via error-correcting output codes. Journal of
Arti�cial Intelligence Research, 2:263{286, 1995.

[10] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vap-
nik. Boosting and other ensemble methods. Neural Com-

putation, 6(6):1289{1301, 1994.
[11] Y. Freund and R. Schapire. Experiments with a new boost-

ing algorithm. In Proceedings of the Thirteenth Interna-

tional Conference on Machine Learning, pages 148{156.
Morgan Kaufmann, 1996.

[12] L. K. Hansen and P. Salamon. Neural network ensembles.
IEEE Transactions on Pattern Analysis and Machine In-

telligence, 12(10):993{1000, 1990.

[13] S. Haykin. Neural Networks: A Comprehensive Founda-

tion. Macmillan, New York, 1994.
[14] Robert Jacobs. Method for combining experts' probability

assessments. Neural Computation, 7(5):867{888, 1995.
[15] N. Kambhatla and T. K. Leen. Fast non-linear dimension

reduction. In J. D. Cowan, G. Tesauro, and J. Alspector, ed-
itors, Advances in Neural Information Processing Systems-

6, pages 152{153. Morgan Kaufmann, 1994.
[16] N. Kambhatla and T. K. Leen. Dimension reduction by

local principal component analysis. Neural Computation,
9:1493, 1997.

[17] D. Koller and M. Sahami. Toward optimal feature selec-
tion. In Proceedings of the 13th International Conference

on Machine Learning, pages 284{292, 1996.
[18] A. Krogh and J. Vedelsby. Neural network ensembles, cross

validation and active learning. In G. Tesauro, D. S. Touret-
zky, and T. K. Leen, editors, Advances in Neural Infor-

mation Processing Systems-7, pages 231{238. M.I.T. Press,
1995.

[19] E. Levin, N. Tishby, and S. A. Solla. A statistical approach
to learning and generalization in layered neural networks.
Proc. IEEE, 78(10):1568{74, Oct 1990.

[20] R. Meir. Bias, variance, and the combination of estima-
tors; the case of least linear squares. In G. Tesauro, D. S.
Touretzky, and T. K. Leen, editors, Advances in Neural

Information Processing Systems-7, pages 295{302. M.I.T.
Press, 1995.

[21] M. O. Noordewier, G. G. Towell, and J. W. Shavlik. Train-
ing knowledge-based neural networks to recognize genes in
DNA sequences. In R.P. Lippmann, J.E. Moody, and D.S.
Touretzky, editors, Ad. in Neural Information Processing

Systems-3, pages 530{536. Morgan Kaufmann, 1991.
[22] E. Oja. Subspace Methods of Pattern Recognition. Research

Studies Press, Letchworth, England, 1983.
[23] E. Oja. Priciple components, minor components, and linear

neural networks. Neural Networks, 5:927{936, 1992.
[24] Lutz Prechelt. PROBEN1 | A set of benchmarks

and benchmarking rules for neural network training al-
gorithms. Technical Report 21/94, Fakult�at f�ur Infor-
matik, Universit�at Karlsruhe, D-76128 Karlsruhe, Ger-
many, September 1994. Anonymous FTP: /pub/pa-
pers/techreports/1994/1994-21.ps.Z on ftp.ira.uka.de.

[25] M.D. Richard and R.P. Lippmann. Neural network clas-
si�ers estimate Bayesian a posteriori probabilities. Neural

Computation, 3(4):461{483, 1991.
[26] D. W. Ruck, S. K. Rogers, M. E. Kabrisky, M. E. Oxley,

and B. W. Suter. The multilayer Perceptron as an approx-
imation to a Bayes optimal discriminant function. IEEE

Transactions on Neural Networks, 1(4):296{298, 1990.
[27] J.W. Sammon Jr. A nonlinear mapping for data structure

analysis. IEEE transactions on Computers, 18:401{409,
1969.

[28] R. Schapire. The strength of weak learnability. Machine

Learning, 5(2):197{227, 1990.
[29] K. Tumer and J. Ghosh. Analysis of decision boundaries in

linearly combined neural classi�ers. Pattern Recognition,
29(2):341{348, February 1996.

[30] K. Tumer and J. Ghosh. Error correlation and error reduc-
tion in ensemble classi�ers. Connection Science, Special

Issue on Combining Arti�cial Neural Networks: Ensemble

Approaches, 8(3 & 4):385{404, 1996.
[31] K. Tumer and J. Ghosh. Linear and order statistics com-

biners for pattern classi�cation. In A. J. C. Sharkey, editor,
Combining Arti�cial Neural Nets: Ensemble and Modular

Multi-Net Systems, pages 127{162. Springer-Verlag, Lon-
don, 1999.

[32] D. H. Wolpert. Stacked generalization. Neural Networks,
5:241{259, 1992.


